Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 14(12)2022 11 25.
Article in English | MEDLINE | ID: covidwho-2123877

ABSTRACT

Within the successive waves that occurred during the SARS-CoV-2 pandemic, recommendations arose to test symptomatic and contact subjects by using rapid antigen devices directed against the viral nucleocapsid protein with the aim to isolate contagious patients without delay. The objective of this study was to evaluate the ability of four rapid lateral-flow tests (RLFT) that were commercially available on the French market in 2022 to recognize various strains of SARS-CoV-2. Series of five-fold dilutions of seven viral suspensions belonging to different lineages of SARS-CoV-2 (19A, 20A, Alpha, Beta, Gamma, Delta and Omicron) were used to evaluate the analytical sensitivity of four commercially available RLFTs (manufacturers: Abbott, AAZ, Becton-Dickinson and Biospeedia). Cell culture and quantitative RT-PCR were used as references. Excellent correlations were observed for each lineage strain between the viral titer obtained via cell culture and the number of RNA copies measured by quantitative RT-PCR. Although the four tests were able to recognize all the tested variants, significant differences in terms of sensitivity were observed between the four RLFTs. Despite the limitation represented by the small number of devices and clinical isolates that were tested, this study contributed by rapidly comparing the sensitivity of SARS-CoV-2 RLFTs in the Omicron era.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Suspensions , Nucleocapsid Proteins/genetics , Nucleoproteins/genetics , Sensitivity and Specificity
2.
J Clin Microbiol ; 59(2)2021 01 21.
Article in English | MEDLINE | ID: covidwho-1066814

ABSTRACT

This study assessed the diagnostic performance of the new COVID19SEROSpeed IgM/IgG rapid test (BioSpeedia, a spinoff of the Pasteur Institute of Paris) for the detection of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in comparison to other commercial antibody assays through a large cross-European investigation. The clinical specificity was assessed on 215 prepandemic sera (including some from patients with viral infections or autoimmune disorders). The clinical sensitivity was evaluated on 710 sera from 564 patients whose SARS-CoV-2 infection was confirmed by quantitative reverse transcription-PCR (qRT-PCR) and whose antibody response was compared to that measured by five other commercial tests. The kinetics of the antibody response were also analyzed in seven symptomatic patients. The specificity of the test (BioS) on prepandemic specimens was 98.1% (95% confidence interval [CI], 96.2% to 99.4%). When tested on the 710 pandemic specimens, BioS showed an overall clinical sensitivity of 86.0% (95% CI, 0.83 to 0.89), with good concordance with the Euroimmun assay (overall concordance of 0.91; Cohen's kappa coefficient of 0.62). Due in part to simultaneous detection of IgM and IgG for both S1 and N proteins, BioS exhibited the highest positive percent agreement at ≥11 days post-symptom onset (PSO). In conclusion, the BioS IgM/IgG rapid test was highly specific and demonstrated a higher positive percentage of agreement than all the enzyme-linked immunosorbent assay/chemiluminescence immunoassay (ELISA/CLIA) commercial tests considered in this study. Moreover, by detecting the presence of antibodies prior to 11 days PSO in 78.2% of the patients, the BioS test increased the efficiency of the diagnosis of SARS-CoV-2 infection in the early stages of the disease.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Immunoassay/methods , SARS-CoV-2/isolation & purification , Antibodies, Viral/blood , Antigens, Viral/immunology , COVID-19/blood , COVID-19/pathology , Chromatography, Affinity , Europe , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Kinetics , SARS-CoV-2/immunology , Sensitivity and Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL